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The Serial Test for Congruential Pseudorandom Numbers 
Generated by Inversions 

By Harald Niederreiter 

Abstract. Two types of congruential pseudorandom number generators based on in- 
versions were introduced recently. We analyze the statistical independence properties of 
these pseudorandom numbers by means of the serial test. The results show that these 
pseudorandom numbers perform satisfactorily under the serial test. The methods of 
proof rely heavily on bounds for character sums such as the Weil-Stepanov bound for 
character sums over finite fields. 

1. Introduction. A standard method of generating uniform pseudorandom 
numbers in the interval [0, 1) is the linear congruential method. For a large mod- 
ulus m a sequence yo, YI, ... of integers in [0, m) is generated by the linear recur- 
sion Yn+1 =Ay, + r mod m for n = O,1 , ... ., where A and r are suitable integers. 
Then linear congruential pseudorandom numbers are obtained by the normaliza- 
tion xn = yn/m. If the parameters in this method are chosen appropriately, then 
linear congruential pseudorandom numbers have attractive statistical independence 
properties [6], [7], [9]. However, the linearity of the recursion yields an undesirable 
lattice structure of these pseudorandom numbers [4, Chapter 3], and this feature 
can render them useless for certain simulation purposes [2]. This state of affairs 
provided the motivation for several recent proposals of nonlinear congruential gen- 
erators [1], [2], [3]. 

We consider here the case where nonlinearity is achieved by using the operation 
of inversion modulo m. Two types of generators that were introduced recently are 
based on this approach, one by Eichenauer and Lehn [2] with prime modulus m, 
and one by Eichenauer, Lehn, and Topuzoglu [3] with m a power of 2. The detailed 
descriptions of these generators will be given in Sections 2 and 3, respectively. The 
papers [2], [3] contain a discussion of the periodicity properties of these generators, 
but no theoretical statistical analysis. The lattice structure of the generator with 
prime modulus is investigated in [1], [11]. 

In the present paper we study statistical independence properties of the pseudo- 
random numbers obtained from the two types of generators mentioned above. A 
reliable test for the statistical independence of successive terms in a sequence of 
uniform pseudorandom numbers is the serial test [4, Chapter 3], [7]. For a given 
dimension k > 2 and for N arbitrary points to, t1, . . ., tNl E [0, i)k we define the 
discrepancy 

DN(to, tl,... ,tN-1) = sup IFN(J) - V(J)J, 
J 
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where the supremum is extended over all subintervals J of [01, )k, FN (J) is N-1 
times the number of terms among to, t,.. ., tN falling into J, and V(J) denotes 
the k-dimensional volume of J. If xo, xl, is a sequence of uniform pseudorandom 
numbers in [0, 1) which is purely periodic with period length T, then we consider 
the points 

xn= (xn,xn+l,...,xn+kl)E [O,1)k forn=O,1,...,r-l 

and we write 
D(k) - D (xo, xl, ..., x_i) 

for their discrepancy. The pseudorandom numbers xn pass the k-dimensional serial 
test (over the full period) if D(k) is small. 

We establish upper bounds for the discrepancy D,k) in the case where xo, xl, ... 
are pseudorandom numbers obtained from a congruential generator based on in- 
versions. It should be noted that upper bounds for D(k) yield error bounds for 
quasi-Monte Carlo integration [7, Section 2] and upper bounds for statistical quan- 
tities such as serial correlation coefficients [8]. Results on the serial test for other 
nonlinear congruential generators have been obtained in [10]. 

2. Prime Modulus. We first describe the generator introduced by Eichenauer 
and Lehn [2] for a prime modulus p > 5. It will be convenient to identify the set 

Fp = {O, 1, ... ,p - 1} of integers with the finite field of order p. For c E Fp, c $ 0, 
let e be the multiplicative inverse of c in Fp, and put 0 = 0. Choose a, b E Fp with 
ab $ 0 in such a way that x2 - bx - a is a primitive polynomial over Fp in the sense 
of [5, Definition 3.15]. Now generate a sequence YoIy, I ... of elements of Fp by the 
recursion 

(1) ~Yn+1-an + bmodp for n=O,l. 

It was shown in [2] that the sequence Yo, YlI,... is purely periodic with period 
length p and that {Yo,Y,. ..,Yp-l} = Fp. We derive a sequence xo,xl,... of 
uniform pseudorandom numbers by setting xn = Yn/P- 

We collect some preparatory results. For integers m > 2 and k> 1 let Ck(m) 
be the set of all nonzero lattice points (hi,... , hk) E Zk with -m/2 < hj < m/2 
for 1 < j < k. We put 

(1 f lfor h =0, 
r(h,m) = ' msin 7rlhl for h E Cl(m), 

m 
and for h = (hl,..., hk) E Ck(m) we define 

k 

r(h, m) = rJ r(hj m). 
j=l 

For real t we write e(t) = e2Xit. Furthermore, x y denotes the standard inner 
product of x, y E Rk. The following two lemmas are from [6, Section 2]. 

LEMMA 1. Let mi > 2 be an integer and let Yo,YI, . .I ,Y-1 E Zk, k > 2, be 
lattice points all of whose coordinates are in [O,m). Then the discrepancy of the 
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points t_ = m-yn, 0 < n < N - 1, satisfies 

DN(tO tli ... J-N-1) < + Z e(h tn). 
mNhECk (M) r(h, m) n=O 

LEMMA 2. For any integer m > 2 we have 

Z 
1 - <1 2g 2 

hECi (m) r(h, m) wr 5 

We also need bounds for certain character sums over the finite field Fp. Let X 
be the canonical additive character of Fp defined by x(n) = e(n/p) for n E Fp. The 
following lemma is a special case of a classical result of Weil [14] (see also Stepanov 
[13] for a proof that does not use algebraic geometry). 

LEMMA 3. For polynomials Q, R E Fp[x] with 1 < deg(R) < deg(Q) < p we 
have 

t Q(n)) < (r -2 
+ 

Emi) pI/2, 
nEFp 

n 

R(n)#0 

where r is the number of distinct poles of Q/R in the algebraic closure Fp (including 
the point at infinity) and ml, ... , mr are the multiplicities of the poles. 

THEOREM 1. For pseudorandom numbers derived from the generator (1) and 
for 2 < k < p we have 

D( k) < 2p-1/2 gp+ ) (2k 2 log p + 2k 7)+2p-1/2 

1 /2 7 k -I 2k -2 12k - 7 
+- -logp+ ) ( logp+ 2k ) 

Proof. Let y5: Fp -- Fp be defined by y5(n) = ain + b for n E Fp and let Vb3 be 
the jth iterate of V/, with V/(n) = n. Then 

1(YniYn+1i,***in+k-1): 0 < n < p-l}1 

= {(V)?(n) l0(n), .... Vk-l (n)): 0 < n < p - l 

and so Lemma 1 yields 

(2) D(k) < 1- 1- S(h)l pp- r (h, p) hECk (P) 

where for h = (hl,..., hk) E Ck(p) we have 

k 

S (h) = Z X jE h -(n) 
nE Fp j=iJ 

For fixed h E Ck(p) let m be the number of nonzero coordinates in h; then 1 < 
m < k. If m = 1, then since each V is a permutation of Fp, we get S(h) = 0. If 
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2 < m < k, let 1 < il < i2 < < im < kbe such that hi, $40, hi2 5 0* *hi, $ 
0. Then 

m \m\ 

(3) S(h) = E X (Ehiti't-1(n) = E X tEhit't-(n) 
nE.Fp t=l nE.Fp t-1 

where we introduced the new summation variable ?l- (n) and called it again n. 
Let cj E Fp be defined by co = 0, cl = 1, Cj+2 = bcj+l + acj for j > 0. Since 
x2 - bx-a is primitive over Fp, we have c; :A 0 for 1 < j < p by [2, p. 321]. By 
induction one shows that for 1 < j < p we have 

Vk3;(n) =nc+l + ac 

nc3 + acj-l 

where n $-aci-le for 1 < i < j. We introduce the rational function 

R(x) hilx ?E hitC xt-il + actt-tl- 

with m 
R(x) = f (xcit-il+ acit-ij-1). 

t=2 

Then we get from (3), 

(4) IS(h)l < im - i1 + X (Q(n)) 
nEFp 

where the asterisk indicates that n :$ -aci-lei for 1 < i < im - il. We note that 
for all j > 0 we have 

(Cj+j) A c) with A = ( 1 

Cj+2 C3 1 a b 

We claim that the elements -aci-je-, 1 < i < p, are all distinct. For otherwise 
there exist 1 < r < s < p and d E Fp such that 

( s1) d Cr -1) 

Ca Cr! 

or equivalently 

A-1 (0) = dAr-l (0) 

Premultiplying by Alt, we get 

Cs-r +1 0a 
(Ca-r+1 (d) 

hence Csr = 0, a contradiction. Going back to (4), we obtain 

IS(h)l < 2(im _ii)_(m - 1)+ E X (n) 

nEFp 
Rn 

R(n)00 

Now Q/R has at most deg(R) = m- 1 finite poles, and since deg(Q) = deg(R) + 1, 
it has a pole at the point at infinity with multiplicity 1. Furthermore, we have 
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deg(R) < deg(Q) = m < k < p, so that we can apply Lemma 3. Using also 
im -il k - 1, we obtain 

IS(h)l < (2m - 2)pt/2 + 2k - m -1. 

This implies 

E ~ ~~~ IS(h)l 
hECk (P) r(h, p) 

< E E |(E ((2m - 2)p1/2 + 2k - m - i) 
m=2 1 <jili2< *' <im <k hEC1 (P) 

k 
(k) (2r 2P 5)( P) 

where we applied Lemma 2 in the last step. Simple manipulations show that 

E < (2p 1/2 -1) j m(k) (-logp + ) - 2p1/2 (( 2logP +7) - 

+ (2k -1) 
2 

1logp+) -1) 

For any real z we have 

? m(k)zm =kz?, (k-)zm- =kz(z + 1)k-l, 
m=l m=l 

therefore 

2 l, g 7 k-1 {2k-2 2k - 7\ 
Y < 2p/2 (-logp+ )k (2k logp+ 2 ) +2p / 

/2 7 k 1 {2k -2 12k - 7 
+(-logp+-) k (2-2logp + 2k+1. 

Together with (2) this yields the desired result. O 

3. Power of 2 Modulus. A generator analogous to (1), but with a modulus 
which is a power of 2, was introduced by Eichenauer, Lehn, and Topuzoglu [3]. For 
q = 2W, w > 1, we write Gq for the set of all odd integers c with 1 < c < q. For 
c E Gq let c E Gq be the multiplicative inverse of c modulo q, i.e., c is the unique 
element of Gq with c -1 mod q. Now let m = 2w, w > 3, be the modulus of the 
generator and let a -1 mod 4 and b -2 mod 4. We define a sequence yo, Yi, ... of 
elements of Gm by the recursion 

(5) yn+i=-aV4 +bmodm forn=0,1,.... 

It was shown in [3] that under the conditions above the sequence yo, Yi.... is purely 
periodic with period length 2W-1 and that {yo, Yl, ... , Y(m/2)- } = Gm. A sequence 
Xo, 1, ... of uniform pseudorandom numbers is derived by setting xn = yn/m. The 
generator (5) may also be defined for arbitrary m > 2, but it is an easy exercise 
in elementary number theory to show that if exactly all reduced residues mod m 
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(i.e., all residues coprime to m) appear in the period, then m cannot have a prime 
divisor > 5. Powers of 2 represent the most interesting case in this class of moduli 
m. 

We consider the 2-dimensional serial test for the full period of the pseudorandom 
numbers x,. A crucial role is played by certain character sums, namely Klooster- 
man sums. For q = 21, w > 1, and arbitrary integers u, v we define 

S(u,v;q) = E e ((un+ vi)). 

These Kloosterman sums were studied in detail by Salie [12]. We collect some 
relevant formulas from [12]: 

(6) S(u, v; q) = S(1, uv; q) if u odd, 

(7) S(u,v;q)=O ifu+v_1lmod2, 

(8) S(u, v; q) = 2dS (d 2.2w -d if u-v _ Omod2d and 1 < d < W, 

where in (7) and (8) we assume that w > 2. For 3 < w < 5, straightforward 
calculations show that 

{ 4 if v _3mod4, 
(90) IS (1,v;8)1 = 4 

- 
if v 13mod4, 

04 if v-lmod4, (10) IS(1, v; 16)1 = ( v2 if v omod 4, 

1{0 if v o5mod8 

For w > 6 it follows from results of Salie [12] that 

2(w+3)/' if v-1 mod 8, 
(12) IS(l,v;2w)I < { 0 if v lmod8. 

We also need the following bounds. 

LEMMA 4. For t > 6 and c odd we have 

(13) E csck < (t + 1) log22t + (0.2126)2t, 

kECi (2') 
k= cmod8 

and for t > 3 we have 

(14) E IkI < (t + 1) log 2 2t + (0.3024)2t. 

kECi (2t) 
k odd 

Proof. We only prove (13) since (14) can be shown similarly. It suffices to 
consider c E G8. We have 

Zt-l csc4= ir(8h+c) _rc ___(8x+c) E csc 2t= e csc 2 )? csc 2t + csc t d 
k=1 

t 
h 

2 tt 

k_ cmod8 
< rc 1 + 2+ 1 2 t 1 

<cesc -+ -2t-3 log cot <~t 2+-2 3 log 
2t 7r ~ 2+1 <c ir 
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Therefore, 

2t-1 rk 2t-1 7rk 
,SC ksc- cs c- Tt csc 2t = E 2t+ E cs 

kEC1 (2t) k=1l= 
k=c mod ) k-c mod 8 k_8-c mod 8 

1 2t _ 
3(o_C+lg(8-c) < 2t-2(1og2t+1 - log 7r) + 2 + _ 12t3(logc+log(8-c)) r 3c 3(8 -c) 7r 

and by calculating the maximum of this expression for c E G8 we get the desired 

bound. 0 

THEOREM 2. For pseudorandom numbers derived from the generator (5) with 
m = 2w, w > 6, we have 

D/2 < (2 - m'12(logm)2 + (1.12)m1/2 log M+ (1.35)m-1/2 + m/2 (23/2 - 1),2 Min 

Proof. Since {yo,Y1.... I Y(m/2)-1} = Gm, we have 

j(YnnYn+i): 0 < n < 2 -1 ={(n,af + b): n E Gm}, 

where afn+b is regarded as an element of Gm by considering it modulo m. Therefore 

Lemma 1 yields 

(15) <2 ( 2 
jS(h)j m/2? + x: r(h,in) 

hEC2 (in) 

where for h = (hi, h2) E C2((m) we have 

IS(h)l = e (-(hln+h2af+h2b)) = JS(hi, h2a; m)j. 
nlEGm 

Now gcd(hl, h2,iM) = 2d with 0 < d < w - 1, so by splitting up the following sum 

according to the value of d we get 

w-1 

z r(h,inIS(h)lIZTd 
hr)(h , m) d hEC2 (M) d=O 

with 

Td =>j(h) JS(hi, h2a;m)1, 

where the last sum is extended over all h = (hi, h2) e C2(m) with gcd(hi, h2, m) = 

2d. Using (8) it follows immediately that 

(16) Tw-i = 1 + 2 

Now we consider 0 < d < w - 2. If one of h, /2d or h2/2d is even, then (7) and (8) 

imply S(hj, h2a; m) = 0. If both hi /2d and h2/2d are odd, then (6) and (8) yield 

S(hj,h2a;m) = 2dS 1 h1h2a ;2w-d) 
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Thus, writing hj = kj2d for j = 1,2, we obtain 

(17) Td = 2d E IS(2, 
k 

(k2ak 2awd)l 

ki,k2 ECi (2w -d) r(kj2d, m)r(k22d, M) 
k,,k2 odd 

For 0 < d < w - 6 we use (12) to get 

Td ? 2(w+d+3)/2 
ki,k2ECi(2w d) r(ki2d, m)r(k22d, m) 

k, k2-a mod 8 

- 2(-3w+d+3)/2 z csc wkd cscZ E ~2w-d2wd 
kiECi (2w ) k2ECi (2w -d) 

k, odd k2-ak, mod 8 

Together with (13) and (14) this yields 

Td < 2(w2-3d+32 (w(log 2 - d + 1) + 0.2126) (los (w - d + 1) + 0.3024) 

< 2(w-3d+3)/2 ( 2 (log m)2 + (0.127) log m + 0.1401 + (0.0122) d2). 

Applying the differential operator Zd twice to the identity _ ?= zd = ( z)- 

we get 

Z: d2 Zd = Z)+ 3 for IzI < 1, 
d=O ( - 

hence 
w-6 00 ~ 8 + 2 3/2 E d22 3d/2 < E d22-3d/2 = 23/2 

d=O d=O 
(32-13 

Therefore, 

w-6 w-6 

t: Td < 23/2m1/2 (12(logm)2 + (0.127) logm + 0.1401) e 2 3d/2 

d=O \.ir d=O 

w-6 

+ 23/2 (0.0122)m"/2 E d22-3d/2 

d=O 

(23/2- 1 (23/2 - 1)m 4wr2 ( 140 

+ (0.0612)m 1/2 

Using m > 64, we obtain 

W-6 ~ ( 2 0.7) 876 
(18) Td < M1/2 (23/2 - 1)2 (og)2+ (0.56) log m + 0.675 

d=O 

For d = w - 5 we get from (11) and (17), 

irjk1j Irjk2j 
Tw_5 < 2 w-2 2+ csc csc 

L~d ~ 32 LE 32' 
kiECi(32) k2EC, (32) 

k, odd k2 = 5ak I mod 8 
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and by distinguishing between the cases a _ 1 mod 8 and a 5 mod 8 we find that 

(19) T5 < 240 m 
Similarly, using (9), (10), and (17), we get 

(20) TW_4 < -, TW3 < -1 m m 
Since IS(1, v; 4)1 = 2 for v odd, it follows from (17) that 

4 
(21) Tw-2= M 

By combining (16), (18), (19), (20), and (21) we get 

= Td <1 (23/2 - 1)2 (log )2 (056) g 
d=O (32 172lg - 

and the desired result follows now from (15). 0 
The method in the proof of Theorem 2 can in principle be extended to treat D(k)2 

for k > 3, but this would require a detailed study of the corresponding exponential 
sums (compare with Section 2). 

4. Discussion. Theorem 1 shows that for the generator (1) with prime modulus 

p we have D(k) = O(p-1/2(logp)k) for 2 < k < p, where the implied constant is 
absolute. It should be noted that this bound is independent of the specific choice of 
the parameters a, b E Fp (only the basic requirements that ab # 0 and X2 - bx - a 
is primitive over Fp have to be met). We compare this behavior under the serial 
test with that for linear congruential generators Yn+ 1 AYn + r modp with prime 
modulus p. For these generators it is known [6, Section 3] that for every prime 
p and every k > 2 there is a choice of the parameters A and r such that we get 
period length p - 1 and discrepancy D(k) - O(p- (log p)k log log p). However, the 
choice of these parameters depends strongly on the dimension k. Therefore, linear 
congruential generators perform better under the serial test than the nonlinear 
generator (1) if a judicious choice of parameters (which varies with k) is made, 
while the nonlinear generator shows a uniformly acceptable (though not excellent) 
behavior under the serial test for any choice of parameters satisfying the definition 
of the generator. On the other hand, a bad choice of parameters in the linear 
congruential method can lead to a behavior under the serial test that is worse than 
that of the nonlinear generator [7, pp. 1026-1027]. 

Analogous remarks apply to the generator (5) for which Theorem 2 shows that 

D (2) = O(m-1/2 (log M)2). For higher dimensions there are technical difficulties 
in this case, but it seems likely that bounds similar to those in Theorem 1 are valid. 
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